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The two-layer model of a stably stratified medium has been used to investigate the
stability of flows without inflection points on the profile of the velocity Vx = u(y),
which is monotonically increasing from zero at the bottom (y = 0) to its maximum
value U0 (when y → ∞). It is shown that in the case of flows of a general form
(in which u′′(y) < 0 everywhere) an instability sets in for an arbitrarily small density
difference; furthermore, perturbations of all scales build up simultaneously. With
an enhancement of stratification, the real part cr of the phase velocity of unstable
perturbations increases. The upper boundary of the instability domain is determined
by the fact that at a certain stratification level (a particular one for perturbations of
each scale), cr reaches U0, the perturbation is no longer in phase resonance with the
flow and turns into a neutral oscillation of the medium.

For flows of a special kind, having points of zero curvature (where u′′ = 0) on the
velocity profile (but having no inflection points as before), the influence of neutral
modes, associated with these points, on the formation of the instability domain
configuration is analysed, and an interpretation of this influence is given in terms of
the resonance and non-resonance contributions to shear flow instability.

1. Introduction
In various problems of hydrodynamics, atmospheric and ocean physics, astro-

physics, and other areas of knowledge, one encounters the stability of shear flows
of a stratified medium. This topic has been addressed in a large body of research
and has an extensive literature (see, for example Dikii 1976; Drazin & Reid 1981;
Turner 1973); however, the overall picture still remains patchy, and many of the key
questions are open.

Let us turn to the simpler and relatively well-studied case of plane-parallel flows.
At the present time there are two main approaches to solving the problem of their
stability. One of them is based on investigation (analytical and/or numerical) of
flows with specific velocity and density profiles, Vx = u(y) and ρ = ρ0(y), in particular,
on seeking and analysis of exactly solvable models (e.g. Thorpe 1969). Within the
framework of this approach, a representative series of model flows has been studied
(see, for example, Drazin & Howard 1966; Hazel 1972; Turner 1973), and a number
of interesting and important results obtained. However, the extent to which these
results are general, i.e. their independence of the details of flow structure, falls far
short of being always clear. Another way of looking at instability has its origins in
a qualitative analysis of differential equations describing the flow, in particular, of
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the Taylor–Goldstein equation. It is focused on obtaining results that hold for an
arbitrary flow or, at least, for a wide class of flows. Amongst these, results of great
importance should be mentioned such as the Rayleigh and Fjørtoft theorems for
homogeneous flows, as well as the Miles theorem and the Howard semicircle theorem
and its extensions for stratified flows (see, for example, Dikii 1976; Drazin & Reid
1981; Kozyrev & Stepanyants 1991; Redekopp 2001).

This paper follows mainly the latter approach. Its objective is to investigate the
stability of flows without inflection points on the velocity profile in a stably stratified
medium. In homogeneous media, such flows are stable by the Rayleigh theorem
so that we shall study the consequences of invalidating this theorem by including
stratification.† For this purpose, we consider in the semispace y � 0 plane-parallel flows
of incompressible fluid in a gravity field g. The flow velocity u(y) increases mono-
tonically from zero when y = 0 to U0 when y → ∞. We confine ourselves to analysing
those flows in which the characteristic scale l of density variation is small compared
to the scale L of velocity variation. Such a relationship of the scales occurs naturally
in fluids with high Prandtl number, but it can be also due to another reason, e.g.
by initial and/or boundary conditions. It is typical, in particular, of flows in the
pycnocline, flows containing the interface between two media, as well as of a number
of other flows, such as the flow of a gas accreted on the photosphere of a star, which
has recently attracted considerable interest (from the standpoint of hydrodynamic
stability; e.g. Rosner et al. 2002; Alexakis, Young & Rosner 2002). In this paper we
consider the limiting case l =0 when the medium consists of two homogeneous layers
of different density, and the density profile has the form of a ‘step’:

ρ0(y) =

{
ρ1, 0 � y < yN,

ρ2 < ρ1, yN < y < ∞,
N2(y) ≡ −g

d

dy
ln ρ0 = Jδ(y − yN ), (1.1)

where N2(y) is the squared Brunt–Väisälä frequency, J is the Richardson parameter
(Richardson global number), and δ(z) is the Dirac delta function. Hereafter, we shall
use dimensionless quantities scaled by U0, L, and ρ1.

Following the standard method for investigation of (spectral) stability in the linear
approximation (e.g. Dikii 1976; Drazin & Reid 1981), we expand a perturbation in the
Fourier integral in terms of the streamwise wavenumber k and then, for each k and
J , we seek eigenvalues (of complex phase velocity c) for the Taylor–Goldstein equa-
tion (2.1). It is easy to show (see § 3.2) that this problem has a continuous spectrum
J = Jc(k) of neutral oscillations with c � 1, where Jc(k) is a monotonically increasing
function of both c and k. In accordance with the Howard semicircle theorem, unstable
oscillations should have |c| < 1.

In the general case, the flow belonging to the class under consideration has a
velocity profile such as u′′ =d2u/dy2 < 0 when 0 <y < ∞. The principal result of
this paper is that for all such flows the instability domain on the (k, J )-plane has
the universal configuration: it is in the band 0 <J <J1(k) where J = J1(k) is the
dispersion relation for neutral oscillations with phase velocity c = 1. The picture of
instability is as follows. Every flow becomes unstable at an arbitrarily small J (i.e.
with an arbitrarily small density difference), and disturbances of all scales, from k = 0
to k = ∞, lose stability at once. When J → +0, the real part cr of the phase velocity of
the unstable perturbation tends to uN = u(yN ) at any k. With increasing J , cr increases

† The result of a similar invalidation of the Fjørtoft theorem has been demonstrated by Thorpe
(1969) who has shown that the flow u = U0 sinh (y/L) is unstable in a stably stratified medium.
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Figure 1. Instability domains for flows without inflection points on the velocity profile. The
instability domain of the flow (1.2) is shaded. Curve 1, the upper boundary J = J1(k) of the
instability domain for the flow u = tanh y; 2, as curve 1 but, for u = 1 − e−y; 3, the WKB
approximation of curve 1; 4, the line at which the growth rate in the flow (1.2) takes its
maximum in J ; 5, as curve 4 but, in the flow u = tanh y.

but the disturbances of all scales remain unstable as before. And only when cr reaches
unity (a maximum flow velocity) at some, individual for every k, value of J = J1(k),
does the perturbation of a corresponding scale cease to be in phase resonance with
the flow and transforms from an unstable to a neutral oscillation of the medium.

As an illustration, we have calculated numerically the stability of the flows u =
tanh y and u = 1 − e−y for 0 <k < 10 and have checked that the instability domain
does indeed take up the whole band 0 <J <J1(k) (which we call hereafter the Band),
and that cr does vary with J in the manner described above. In figure 1, the curves
J = J1(k) for these flows are marked respectively 1 and 2.

As one more example, it is natural to consider the flow with the simplest piecewise
linear velocity profile

u(y) =

{
y, 0 � y � 1,

1, y � 1,
(1.2)

the stability problem for which can be solved analytically (see § 5). In this model
u′′ = −δ(y −1) � 0, and it clearly belongs to the chosen class of flows but the domain
of its instability on the (k, J )-plane (shaded in figure 1), although shown inside the
Band (see figure 8), has quite a different configuration. As an analysis shows, such a
difference is due to the fact that nearly every point on the velocity profile (1.2) is a
null-curvature point (NCP) at which u′′ = 0, and that each NCP can create a little
‘stability island’ within the Band and therefore reduces the instability domain.
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The paper is organized as follows. In § 2 we formulate the statement of the problem
and basic equations. In § 3 the stability of flows in the general case (when u′′ < 0
everywhere) is analysed, and § 4 is devoted to the study of changes in spectrum and
stability caused by the NCP. The flow with a piecewise linear velocity profile and its
place in the overall picture are considered in § 5. Results are discussed in § 6. Some of
ancillary calculations are presented in the Appendices.

2. Statement of the problem and basic equations
Let us consider a steady-state plane-parallel flow u(y),

u(0) = 0, u(∞) = 1, u′(0) = 1; u′(y) � 0, u′′(y) � 0,

of ideal stably stratified fluid, and two-dimensional perturbations to its background
which we shall describe by a stream function ψ: Vx = u(y) + ∂ψ/∂y, Vy = −∂ψ/∂x.
Within the Boussinesq approximation, the linearized stream function, ψ = g(y)e−iωt+ikx ,
satisfies the Taylor–Goldstein equation (Drazin & Reid 1981)

d2g

dy2
+

[
N 2(y)

(u − c)2
− u′′

u − c
− k2

]
g = 0; g(0) = 0, |g(∞)| < ∞, (2.1)

which in a two-layer medium (1.1) reduces to the Rayleigh equation (Drazin & Reid
1981)

d2g±

dy2
−

(
u′′

u − c
+ k2

)
g± = 0; g−(0) = 0, |g+(∞)| < ∞, (2.2)

supplemented by continuity conditions for pressure and normal velocity at the
interface:

g+(yN ) = g−(yN ), J = (uN − c)2
(

g′
−

g−
− g′

+

g+

)
y=yN

. (2.3)

Here the subscripts + and − correspond to the solutions for y > yN and y < yN ,
respectively, and c = ω/k. Also, we introduce the functions F (y) and G(y) that are
the solutions of the Rayleigh equation for the entire real semiaxis 0 � y < ∞ when
ci = Im c > 0. They are specified by the equalities

G(y) = g+(y) when y � yN ; F (y) = G(y)

∫ y

0

dy1

G2(y1)
; F ′G − FG′ = 1, (2.4)

and can be analytically continued to ci � 0. If somewhere along the path of integration
G = 0, this point should be bypassed in a complex plane. Note that G(y) is a
continuation of g+(y) and F (y) is a continuation of g−(y) (up to normalization†)
onto the whole flow domain, 0 � y < ∞. With F and G, the second formula in (2.3)
can be written as

J = (uN − c)2
(

F ′

F
− G′

G

)
y=yN

. (2.5)

† F (0) = 0 for every k such that G(0) �= 0; in this case g−(y)/F (y) = const when y � yN .
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Sometimes, instead of g(y), it is more convenient to use the function f (y):

g = (u − c) f e−ky , and†

d

dy

[
(u − c)2

df±

dy

]
= 2k(u − c)

d

dy
[(u − c)f±]; f−(0) = 0, f+(∞) = 1;

f+(yN ) = f−(yN ), J = (uN − c)2
(

f ′
−

f−
− f ′

+

f+

)
y=yN

.




(2.6)

3. Flow stability in the general case
In this section we investigate the stability of the flow with a sufficiently arbitrary

velocity profile u(y). It will be assumed that u′′ is strictly negative for any finite y > 0
and that the density jump lies neither too close to or too far from the bottom, i.e.
both uN and (1 − uN ) are of the order of unity. First we must point out that for
every k, the instability domain is bounded in J . Indeed, by the Rayleigh theorem,
the functions F and G have no zeros when 0 <y < ∞. Moreover, in accordance with
the Howard semicircle theorem, in the case of unstable modes |c| � 1. Therefore the
right-hand side of the matching condition (2.5) is bounded above, and this implies
boundedness in J of the instability domain. Our aim is to determine its boundaries.

It is convenient to display the oscillation spectrum on a (k, J )-diagram. The
coordinate axes are natural boundaries of the instability domain because oscillations
(if any) with k =0 or J = 0 are clearly neutral. In § 3.1 we calculate the oscillation
spectrum for long waves (k � 1) and show that some of these oscillations are unstable.
Then, in § 3.2, we find the upper boundary of the instability domain – it turns out
that this is the curve J = J1(k) corresponding to neutral oscillations propagating with
the phase velocity c = 1 – and show that when J > 0 there are no neutral oscillations
with c < 1; hence, there are no another stability boundaries. Thus we prove that in a
flow of a general form the instability domain is indeed the band 0 < J < J1(k).

3.1. Long-wavelength perturbations

When k � 1 it is convenient to solve the problem as formulated in (2.6) using the
method developed by Drazin & Howard (1962). Straightforward but rather unwieldy
calculations (see Appendix A) lead to the dispersion equation[

J

∫ yN

0

dy

(u − c)2
− 1

]{
1 − k

∫ ∞

yN

dy1

[
1 −

(
1 − c

u1 − c

)2]

+ k2

∫ ∞

yN

dy1

(u1 − c)2

∫ ∞

y1

dy2[(u2 − c)2 − (1 − c)2]

}

−Jk2

∫ yN

0

dy(u − c)2
[ ∫ y

0

dy1

(u1 − c)2

]2

= k

{
(1 − c)2 + k

∫ ∞

yN

dy1[(u1 − c)2 − (1 − c)2]

} ∫ yN

0

dy

(u − c)2
+ O(k3), (3.1)

where the notation um = u(ym) is used. The pole u(y) = c, by the Landau rule (e.g.
Dikii 1976), should be bypassed below because u′(y) > 0.

† The boundary condition for y → ∞ corresponds to a specific normalization of f (y) and g(y).
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For k = 0 we obtain

J

∫ yN

0

dy

(u − c)2
= 1, (3.2)

so that a neutral oscillation with c = c0(J ) > uN , corresponds to each value of the
Richardson parameter J > 0, and c0 increases with an increase of J . When

J > J1(0) =

[∫ yN

0

dy

(1 − u)2

]−1

(3.3)

c0 exceeds 1, and the condition of resonance of the wave with the flow, u(y) = c,
ceases to hold anywhere. In the limit J → 0 the resonance level yc approaches yN

from above, c0 ≈ uN + J/u′
N .

When k > 0, oscillations are separated into two classes: modes with c0 � 1 remain
neutral, and those with uN < c0 < 1 become unstable. Indeed, for a not too weak
stratification (k � J <J1(0)) we obtain: c = c0 + c1k + c2k

2 + . . . , where c0 is deter-
mined by equation (3.2),

c1 =
(1 − c0)

2

2J 2I3

, Im
def
=

∫ yN

0

dy

(u − c)m
(m = 3, 4);

c2 =
1

2I3

{
(1 − c0)

4

J 3

(
1 − 3I4

4J I3
2

)
− (1 − c0)

3

J 4I3

+
1

J 2

∫ ∞

yN

dy1(u1 − c0)
2

[
1 −

(
1 − c0

u1 − c0

)4]
+

∫ yN

0

dy(u − c0)
2

[ ∫ y

0

dy1

(u1 − c0)2

]2}
.

It is easy to see that c1 is real and negative, and c2, because of the wave–flow resonance,
has a positive imaginary part (it will be recalled that u′′

c and I3 are negative),

Im c2 =
πu′′

c (1 − c0)
4

2u′
c
3J 2I3

, (3.4)

i.e. the perturbations are unstable. The subscript c denotes the values of the functions
at the resonance point y = yc, where u(y) = cr ≡ Re c.

In the case of a weak stratification, J = O(k), the difference |uN − c| = O(k), and
the integrals in (3.1), having a resonance denominator, become of O(k−1). After
corresponding reordering in (3.1) (see equation (A 2)), we obtain, at the main order,
the dispersion equation

z2 − J̃ z + J̃ (1 − uN )2 = 0; z = u′
N (c − uN )/k, J = kJ̃ . (3.5)

As with the stronger stratification, the resonance contribution is not involved at the
main order. Nevertheless, solutions of (3.5),

z =
1

2

{
J̃ ± (J̃ [J̃ − 4(1 − uN )2])1/2

}
, or c = uN +

1

2u′
N

{
J ± (J [J − 4k(1 − uN )2])1/2

}
,

(3.6)

describe unstable oscillation when 0 <J < 4k(1 − uN )2. In this region the instability is
due to the action of a non-resonance mechanism. When J ∼ 4k(1 − uN )2, the contribu-
tions to instability from the non-resonance and resonance (the first term on the right-
hand side of (A 2)) mechanisms are of the same order, and when J > 4k(1 − uN )2 up to
J = J1(0) = O(1) (see above) the instability is due solely to the wave–flow resonance.
For more details about the resonance and non-resonance mechanisms of shear flow
instability, see Churilov & Shukhman (2001).
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Thus it has been shown that when k � 1 there is a continuous spectrum of the
oscillations whose propagation velocity cr increases with J from uN (when J → 0) to
infinity (when J → ∞). By the Howard semicircle theorem, only those perturbations
which interact with the flow by resonance, i.e. have cr < 1, are unstable and the range
of variation of the Richardson parameter 0 <J <J1(0) corresponds to these.

3.2. The eigen-oscillation spectrum

Let us show that the structure of eigen-oscillation spectrum found for long-wave
perturbations is the same at any k. We begin with neutral oscillations that move
faster than the flow. For any real c � 1, in equation (2.2) we have u′′/(u − c) > 0, and
it has real solutions to the left (g−) and right (g+) of yN , each of which satisfies its
own boundary condition and has, respectively, a positive and negative logarithmic
derivative, so that the second matching condition in (2.3) provides J = Jc(k) > 0 for
each c and k pair. It is evident that Jc(k) increases monotonically with k, and one
can show that it increases monotonically with c too. Therefore, on the (k, J )-diagram
the lower boundary of the set of neutral modes with c � 1 is the dispersion curve
J = J1(k) that corresponds to oscillations with c = 1.

When k > 1, the Jc(k) can be calculated to a good accuracy using the WKB method
(compare, for example, curves 1 and 3 in figure 1). On substituting the WKB solutions
of equation (2.2),

g+ = K−1/2exp

(
−

∫
K dy

)
, g− =K−1/2 sinh

[ ∫ y

0

K(y1) dy1

]
; K2(y) = k2− u′′

c − u
,

into the second matching condition in (2.3), we find

Jc(k) ≈ 2(c − uN )2K(yN )

1 − exp

[
−2

∫ yN

0

K(y) dy

] k
1
= 2(c − uN )2 k + O(k−1).

It is of interest to mention that in the flow u(y) = 1 − e−y the WKB method yields the
exact result for J1(k),

J1(k) =
2κe−2yN

1 − e−2κyN
, κ = (1 + k2)1/2.

Now let see which oscillations are below the dispersion curve J = J1(k) on the
(k, J )-diagram. Assuming that u(y) → 1 exponentially as y → ∞,

u(y) ≈ 1 − ve−αy; v > 0, α > 0,

one can find using the perturbation theory (see the first part of Appendix B) that

c ≈ 1 +
J − J1(k)

B0J1(k)
+

παI0

B0 sin 2πq

[
Γ (q + k/α)

Γ (2q)Γ (1 + k/α − q)

]2 [
J − J1(k)

v B0J1(k)

]2q

,

where

B0 =
2

1 − uN

+ I0

∫ ∞

0

dyu′′

(1 − u)2
g0

2(y) > 0, I0 =

∫ yN

0

dy

G2(y)
, q =

(
1 +

k2

α2

)1/2

,

and g0(y) is the eigenfunction of the mode with c = 1. It is easy to see that there are
neutral modes with c > 1 above the curve J = J1(k) and unstable modes with cr < 1
under it. Indeed, in the last case [J − J1(k)]2q = |J1(k) − J |2q e2iπq (see Appendix B),
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and ci ≡ Im c > 0.† Hence, the curve J = J1(k) is the upper boundary of the instability
domain.

To complete the analysis let us show that there is no other stability boundary (apart
form k = 0, J = 0, and J = J1(k)). Let there be at a certain k > 0 a marginally stable
mode with 0 <c < 1. The matching condition (2.5) may be represented as a dispersion
equation

(c − uN )2 = JF (yN )G(yN ) ≡ JG2(yN )

∫ yN

0

dy

G2(y)
,

which, in particular, shows that the equalities J = 0 and c = uN are equivalent: from
one follows the other. Assume that J > 0 (c �= uN ). Then, according to (2.4), F (0) = 0,
and F ′(0) = 1/G(0), so that h = G(0)F (y) is the solution of the Rayleigh equation
with the boundary conditions h(0) = 0 and h′(0) = 1, i.e. a real and positive (when
0 <y � yc) function, since, by the Rayleigh theorem, when y > 0 it cannot become
zero. For the same reason, G(y) is also positive when y � yc.

There are two possible variants of the relative position of yN and yc. If yN < yc,
then

(c − uN )2 = J
G(yN )

G(0)
[G(0)F (yN )], arg[(c − uN )2] = arg G(yN ) − arg G(0), (3.7)

and if yN >yc, then G(yN ) > 0, and∫ yN

0

dy

G2(y)
=

1

G(0)

[
G(0)

∫ yc

0

dy

G2(y)

]
+

∫ yN

yc

dy

G2(y)
, (3.8)

and the expression in square brackets and the last integral are positive.
With the indentation (from below) of the singular point y = yc, G(y) is continuous,

and G′(y) has a jump:

G′(yc + 0) − G′(yc − 0) =
iπu′′

c

u′
c

Gc.

Upon substituting G(y) = G0(y) exp[iϕ(y)] when y < yc and taking into consideration
that G(y) > 0, when y � yc, from (2.2) we find

2ϕ′G′
0 + ϕ′′G0 = 0, or ϕ′G2

0 = const > 0 because ϕ′(yc − 0) > 0.

Thus we have ϕ < 0 but ϕ′ > 0 when y < yc. On the other hand, ImG is the solution of
equation (2.2), with Im G(yc) = 0, and therefore (by the Rayleigh theorem) it is strictly
negative when 0 � y < yc, so that −π <ϕ < 0. Now, using (3.7) and (3.8) it is easy to
see that Im (c −uN )2 > 0 when J > 0, and this is in conflict with the assumption about
marginal stability of the mode. Consequently, the lower boundary of the instability
domain is J = 0, and on it c = uN .

Thus we have shown that in the general case the oscillation spectrum is continuous,
and it spans the entire first quadrant of the (k, J )-plane. In the Band (see figure 1)
the oscillations are unstable, and above it they are neutral. The propagation velocity
of perturbations cr changes with an increase of J from uN when J =0 to 1 when
J → J1(k) and further monotonically to infinity.

† This reasoning is correct when 2q is not equal to an integer. If 2q is an integer the formula for
c contains ln[J − J1(k)] (instead of [J − J1(k)]2q ) that does also provide ci > 0 as J <J1(k).
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Figure 2. Eigenfunctions of neutral oscillations corresponding to the NCP y = yn when
(a) yN <yn, and (b) yN >yn. Curve 1, k > kn; 2, k = kn; 3, kG < k < kn; 4, k = kG (J = ∞);
5, 0 < k < kG; 6, kF < k < kn; 7, k = kF (J = ∞); 8, 0<k <kF . Dots show the eigenfunctions in
unstably stratified (J < 0) flows.

4. Stability of flows with NCPs
The velocity profile without inflection points can, however, have points of null curva-

ture in which u′′ becomes zero but does not change its sign. In this section we show
that, in contrast to flows of a general form where neutral oscillations with 0 <c < 1
do not exist, in flows with NCPs, to each NCP y = yn there corresponds a neutral
oscillation with the phase velocity c = cn = u(yn) < 1. Moreover, if the NCP lies above
the density jump (yn > yN ) it creates two little ‘islands of stability’ in the Band in the
form of arcs of the neutral curve J = J (n)(k) that correspond to these oscillations – one
arc in the long-wavelength part of the spectrum and the other in the short-wavelength
one – and thus reduces the ‘area’ of the instability domain.

4.1. Neutral modes with 0 <c < 1

It is well known (see, for example, Dikii 1976) that in a homogeneous flow with
u′′(y) of fixed sign (strictly negative, in particular) there are no eigen-oscillations. If,
however, the flow has an NCP, eigen-oscillations do appear (see Appendix C): to each
NCP y = yn there corresponds a neutral oscillation with the phase velocity cn = u(yn),
specific wavenumber kn, and eigenfunction G(y). The eigenvalue kn is found from the
condition G(0) = 0.

In stratified flows with NCP neutral oscillations of this kind also exist. Indeed, when
c = cn, the Rayleigh equation (2.2) has no singularity at the point of phase resonance
u(y) = c, so that functions F (y) and G(y) are real, and from equation (2.5) there
is a real J corresponding to each k, thereby defining the dispersion law J = J (n)(k)
for the neutral oscillations associated with NCP y = yn and propagating with the
phase velocity cn. The sign of J (n)(k) depends on which of F and G has a greater
logarithmic derivative at y = yN , i.e. on the behaviour of the functions (that changes
with wavenumber k) as well as on the position of the density jump. The behaviour
of the eigenfunction g(y) of problem (2.1) in different cases is shown schematically in
figure 2.

As mentioned above, when k = kn, G(0) = 0 and therefore satisfies both of the
boundary conditions in (2.1). Hence, g+(y) = G(y) as well as g−(y) = G(y) (each in
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Figure 3. Neutral oscillations of flows with an NCP for (a) yN <yn, (b) yn < yN <yF0,
(c) yF0 < yN . Curve 1, the upper boundary of the instability domain, J = J1(k); 2, the long-
wavelength branch of neutral oscillations with c = cn; 3, their short-wavelength branch. The
arcs of curves 2 and 3 on which D(k) > 0 are plotted as solid lines; the dots correspond to
D(k) < 0.

its domain of definition), the eigenfunction of (2.1) is smooth (curves 2 in figure 2),
and J (n)(kn) = 0. When k �= kn, however, the eigenfunction is necessarily broken at the
density jump (see figure 2). In view of (2.5) and (2.4),

J (n)(k) = (uN − cn)
2

(
F ′

F
− G′

G

)
y=yN

=
(uN − cn)

2

FNGN

, (4.1)

so that the neutral mode exists under stable stratification (J > 0) if FN ≡ F (yN ) and
GN ≡ G(yN ) have the same sign, and under unstable stratification in the case of
opposite signs. The behaviour of F (y) and G(y) as functions of k is analysed in
Appendix C: when k > kn they are both positive everywhere in 0<y < ∞, and when
k < kn each of them has exactly one zero in this interval, yF and yG respectively, and

yG � yn < yF0 � yF , (4.2)

where yF0 is a zero of F (y) at k =0. Functions F and G have the same sign outside
the interval (4.2) (i.e. when y <yG or y >yF ), and opposite signs inside it.† Hence a
change of sign of J = J (n)(k) occurs at k = kn (when J (n)(k) vanishes) as well as those
values of k, if any, at which either yF or yG coincides with yN (and J (n)(k) → ∞).

As applied to stably stratified (J > 0) flows, this means that at any position yN of
the density jump there exists a short-wavelength branch of neutral oscillations that
is an extension to J > 0 of the neutral oscillation with k = kn of homogeneous flow.
At this branch, the eigenfunction of (2.1) is positive (has no nodes) on 0 <y < ∞ (see
figure 2, curves 1 and 2). In accordance with (3.4), there can be also a long-wavelength
branch of neutral oscillations with c = cn that begins at k = 0, but only in that case
when the integral in (3.2) is positive. The analysis of this condition, in view of (4.2),
shows that:

(i) if yn < yN <yF0, there are no long-wavelength neutral oscillations with c = cn;
(ii) if yN <yn, the neutral mode exists when 0 � k < kG, where kG is the value of

the wavenumber at which GN = 0;
(iii) finally, if yN >yF0, the neutral mode exists when 0 � k < kF , where kF is the

wavenumber at which FN = 0.
For each of the three cases the branches of the neutral curve are shown in figure 3.
Note that on the long-wavelength branch the eigenfunction is certain to have a node
(see figure 2, curves 5 and 8).

† Note that the position of points yn and yF0 depends only on the velocity profile u(y), whereas
the position of yF and yG varies with k.
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Thus a neutral mode, having one or two branches in a stably stratified flow, corres-
ponds to each NCP. On the (k, J )-diagram these branches lie in the first quadrant
which is already occupied by the oscillation spectrum found in § 3. Moreover, they fall
(at least partially) into the Band (see figure 3) that consists of unstable oscillations.
The question arises as to whether this new mode is independent of the ‘old’ spectrum
or is made up of it. To answer this question and to identify the position of the
new neutral mode in the complete spectrum of oscillations one should know which
oscillations are in its vicinity in the (k, J, c)-space, because every eigen-oscillation is
described by these three parameters rather than two.

Using the perturbation theory (for details, see the second part of Appendix B)
we find that the imaginary part ci of the phase velocity has on the neutral curve a
second-order zero,

ci = −Auc
iv

D(k)

[
J − J (n)(k)

]2
, (4.3)

where A> 0,

D(k) =

∫ ∞

0

dyu′′g2

(u − cn)2
+

2JgN
2

(cn − uN )3
, (4.4)

and g(y) is the eigenfunction of the neutral mode. Thus, the sign of ci is the same on
both sides of the neutral curve. Consequently, the neutral mode with c = cn does not
belong to the stability boundary.

As one can see from (4.3), the sign of ci coincides with the sign of D(k)†: only when
D(k) > 0 are unstable oscillations adjacent to the neutral curve (i.e. at a given k they
have close values of J and cr ). If, however, D(k) < 0, in the neighbourhood of the
neutral mode we obtain ci < 0, which formally corresponds to damped oscillations. It
is well known, however, that if the Taylor–Goldstein equation is regarded as a limit
(at large Reynolds numbers) of the equations that take into account the dissipation
(viscosity and heat conduction), then the limit for dissipative solutions is provided
only by unstable and neutral solutions of the Taylor–Goldstein equation (obtained
using the indentation of the points of phase resonance by the Landau rule, e.g. Dikii
1976). The solution with ci < 0, however, is not such a limit and will therefore not be
considered (as it is ‘non-physical’). Accordingly, in figure 3 parts of the neutral curve
on which D(k) > 0 are plotted as solid lines, and the dots correspond to parts with
D(k) < 0.

It is easy to verify (see (4.4) and Appendix B) that D(k) < 0 everywhere on the
neutral curve when cn <uN , and when cn > uN , at each of the neutral curve branches,
D(k) changes its sign on going from its left to right end: on the long-wavelength
branch from plus to minus when k = k∗, and on the short-wavelength branch from
minus to plus when k = k+ (see figure 3a). At the critical points k∗ and k+, where
D(k) = 0, J and c are related by

J − J (n) ≈ 1

2

∂2J

∂c2
(c − cn)

2, or c − cn ∼
(
J − J (n)

)1/2
(4.5)

(see (B 11)). Figure 4 presents the trajectories (with a change of J ) of all solutions
(4.5) on the complex plane c, but, as has already been pointed out, only the solutions
with ci � 0 (shown by solid lines) have physical meaning.

† Since u′′(y) � 0, in the NCP the first (after u′′) non-zero derivative has an even order and is
negative.
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Figure 4. Trajectories of c(J ) near the neutral curve when D(k) = 0. Signs near the lines
designate the sign of difference (J − J (n)(k)).

Now we have to make clear the position filled by the NCP-associated neutral mode
in the oscillation spectrum. Let start with its short-wavelength end (k 
 1), and then
analyse the whole picture of the flow stability.

4.2. Short-wavelength perturbations

For the short-wavelength region the problem of the spectrum of flow eigen-oscillations
can be solved analytically. When k 
 1 the term with u′′ in equation (2.2) may be
regarded as a perturbation, and the solution can be constructed in the form of an
expansion in terms of k−1. We obtain (up to normalization)

g+ = e−ky

{
1 +

1

2k

∫ ∞

y

dy1u
′′
1

u1 − c

[
1 − e−2k(y1−y)

]
+ O(k−2)

}
,

g− = eky

{
1 − e−2ky +

1

2k

∫ y

0

dy1u
′′
1

u1 − c

[
1 − e−2k(y−y1)

]
(1 − e−2ky1 ) + O(k−2)

}
.

Using the second matching condition (2.3) and omitting exponentially small terms we
arrive at the dispersion equation

(c −uN )2 =
J

2k

{
1 − 1

2k

∫ yN

0

dyu′′

u − c
(1 − e−2ky)e−2k(yN −y) − 1

2k

∫ ∞

yN

dyu′′

u − c
e−2k(y−yN )

}
+ · · ·

By solving it using the method of successive approximations (c = c(0) + c(1) + · · ·) we
find (

c(0) − uN

)2
=

J

2k
,

c(1) = −c(0) − uN

4k

[ ∫ yN

0

dyu′′

u − c(0)
(1 − e−2ky)e−2k(yN −y)

+

∫ ∞

yN

− dyu′′

u − c(0)
e−2k(y−yN )+

iπu′′
c

u′
c

e−2k(yc−yN )

]
, (4.6)

where
∫
− denotes a Cauchy principal value integral.
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Thus the instability at k 
 1 is caused by the wave–flow phase resonance, and since
u′′ � 0, the imaginary part of the phase velocity,

ci ≈ − π

4k

u′′
c

u′
c

(
c(0) − uN

)
e−2k(yc−yN ) ≡ −π

2

u′′
c

u′
c

J 1/2

(2k)3/2
e−2k(yc−yN ), (4.7)

takes positive values only when uN < c(0) < 1, i.e. in the Band as in flows without the
NCP. The growth rate γ = cik becomes zero at the edges of the Band, when J =0 (i.e.
c(0) = uN ), as well as when c(0) → 1 (i.e. yc → ∞). If an NCP-associated neutral mode
has velocity in this range (i.e. if uN < cn < 1), the growth rate also vanishes at the
neutral curve J = J (n)(k), remaining positive on both sides of it (as also follows from
(4.3), since D(k) > 0 when k 
 1). This is the key difference in the structure of the
instability domain for flows with and without the NCP (as well as with the NCP lying
below the density jump, at yn < yN ). Such a neutral mode is the inner limiting point
of a set of unstable modes (rather than the stability boundary). The corresponding
neutral curve dissects the Band into stripes, in each of which the growth rate changes
from zero at the edges to some maximum (for a given k) value. Let us determine
these maxima.

Differentiating (4.7) with respect to J , we obtain the extremum condition:

∂γ

∂J
= −π

4

∂c(0)

∂J

[
u′′

c

u′
c

+
(
c(0) − uN

)( u′′′
c

u′
c
2

− u′′
c
2

u′3
c

− 2k
u′′

c

u′2
c

)]
e−2k(yc−yN ) = 0,

from which it is evident that the minimum (zero) value of the growth rate is indeed
attained on the neutral curve, at c(0) = cn, when u′′

c = 0, and u′′′
c = 0. Maximum values

(γm), however, are reached near the lower (J = 0) boundary of the instability domain,

γm1(k) = −πu′′
N

8 ek
+ O(k−2) at c(0) = uN +

u′
N

2k
+ O(k−2) and J =

u′2
N

2k
+ O(k−2),

and immediately above the neutral curve (assuming that yn − yN =O(1)),

γm2(k) = − πuiv
n

8 e2k2u′
n

(cn − uN )e−2k(yn−yN ) at c(0) = cn +
u′

n

k
+ O(k−2).

With an increase of k, γm1 decreases as 1/k, and γm2 decreases exponentially.

4.3. Oscillation spectrum of flows with an NCP

Now we analyse the flow oscillation spectrum as a whole. Proceeding in the same
manner as in § 3.2, it is easy to verify that in flows with an NCP the continuous
spectrum J = Jc(k) of the neutral oscillations with c � 1 remains, and that the lower
curve of this family, J = J1(k), again serves as the upper boundary of the instability
domain, i.e. unstable modes are adjacent to it from below along its entire length.
Further, in flows with an NCP, there are also no marginally stable modes with J > 0
and c < 1. These results, together with the results of an analytical investigation of the
long-wavelength (§ 3.1) and short-wavelength (§ 4.2) asymptotics, lead us to conclude
that in flows with an NCP the instability domain on the (k, J )-plane also lies in the
Band. The velocity cr of unstable oscillations also changes with J from uN when J =0
to 1 when J → J1(k) − 0. The distinctive feature of flows with an NCP is that each
NCP has its corresponding neutral mode of oscillations with phase velocity c = cn

and with the dispersion law J = J (n)(k). Let us find the position of this mode in the
picture of eigen-oscillations of the flow.

First, we consider the case where there is a single NCP lying above the density jump
(cn > uN ). It is convenient to use a specific model flow for illustrating the relevant
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Figure 5. The velocity profile of the model flow (4.8) with a = 0.5.

reasoning and conclusions. For this purpose, of the one-parameter family of flows
with an NCP,

u(y) = 1 − 2z2 − 9az + 18a2

2 − 9a + 18a2
z; z = e−µy, µ =

2 − 9a + 18a2

6(1 − 3a + 3a2)
, (4.8)

a flow with a = 0.5 and a density jump at yN = 0.3 is chosen (see figure 5). The flow
parameters are

µ = 4
3
; uN = 0.201576, yn = 0.519860, cn = 5

16
= 0.3125;

k∗ = 0.062718, kG = 0.110901, kn = 0.212870, k+ = 0.293323.

Results of calculations for this model are presented in figures 6 and 7.
At the long-wavelength (k � 1) end of the spectrum, as is evident from (3.2) and

(3.4), one mode corresponds to each J > 0, and cr increases monotonically with J

from uN to ∞, and ci is zero above the Band, is non-negative in the Band and
changes continuously but not monotonically: it tends to zero at the edges of the
Band, as well as having a second-order zero within the Band, when c = cn, i.e. on the
long-wavelength branch of the neutral curve J = J (n)(k). The analysis in § 4.1 showed
that when D(k) > 0, near the neutral curve there are only unstable modes; therefore,
we conclude from continuity that ci(J ) has on the neutral curve a second-order zero
for each k from the range 0 � k < k∗.† When k = k∗, ci also becomes zero, but now
according to (4.5). At the short-wavelength end of the spectrum the picture is similar
(see § 4.2), in particular, ci(J ) exactly has a second-order zero on the (short-wavelength
branch of) neutral curve for each k from the interval k+ <k < ∞ (figure 7c, d).

Thus, when 0 � k < k∗ or k+ <k < ∞ the Band includes the neutral mode that has
a phase velocity cn and is (for each k from the intervals indicated) the inner limiting
point of a set of unstable modes (see figure 6). It can be said that the NCP modifies
the instability domain: it now occupies not the entire Band but a band that is cut from
the left and right by the corresponding arcs of the neutral curve J = J (n)(k) (‘solid’ arcs
of lines 2 and 3 in figures 3(a) and 6). The points (k∗, J

(n)(k∗)) and (k+, J (n)(k+)) on
the (k, J )-diagram are bifurcation points in which the neutral mode ‘separates’ from

† A numerical calculation of the model (4.8) lends support to this; however, its results for
0< k < k∗ are extremely inconvenient for a graphical representation; therefore, the plots are given
for k > k∗ only.
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Figure 6. Instability domain of the flow (4.8): (a) the (k, J )-diagram; (b) lower part of the
diagram (enlarged). Curve 1, the upper boundary of the instability domain J = J1(k); 2, the
long-wavelength branch of neutral oscillations; 3, their short-wavelength branch; 4, oscillations
with cr = cn and k∗ < k < k+; 5, dependence of ci on k for these oscillations. Dots show the
arcs of the curves 2 and 3 on which D(k) < 0.

the continuous spectrum (in the sense that it fails to have neighbouring oscillations
in the (k, J, c)-space), and the unstable mode with cr = cn appears (see figure 6b).

To check this, take k from the interval k∗ < k < k+ and look at the behaviour of
the solution of the problem (2.1) with a change of J from J1(k) to 0. In the space
(k, J, c) we obtain a certain trajectory, along which cr changes continuously from 1
to uN taking, among others, the value cn as well. At the ends of this trajectory ci → 0,
and at the inner points ci is positive. Indeed, our trajectory does not intersect the
neutral curve (even if it exists for a given k), since D(k) < 0, and in the neighbourhood
of the neutral curve there are no unstable modes. There are no other neutral modes,
however, as shown in § 3.2, so that at the inner point of the trajectory ci(J ) cannot
become zero. If k is close to k∗ or k+, relation ci(J ) has a characteristic two-hump
form (figure 7b), but ci does not become zero between the humps. If, however, k is
not close to k∗ and k+ there is only one maximum (figure 7a). Consequently, in those
spectral regions where D(k) < 0 (i.e. when k∗ <k <kG or kn � k < k+), the neutral
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Figure 7. Dependence of ci on J for different k: (a) k = 0.2; (b) k = 0.27;
(c) k = 1.0; (d) k =3.0.

mode is isolated and supplements, rather than modifying, the previously obtained
oscillation spectrum.

If, however, the NCP is such that cn <uN , then on the entire neutral curve we
have D(k) < 0 (see (4.4)), and similar reasoning shows that in this case the oscillation
spectrum, described in § 3, is not modified but is only supplemented by the isolated
neutral mode with c = cn.†

The above analysis is readily generalized to flows with several NCPs. Each NCP
with cn >uN leaves a pair of cuts in the Band on which ci becomes zero and, possibly,
supplements the spectrum by an isolated neutral mode. As long as the number of
NCPs with cn >uN is finite, these cuts simply dissect the long- and short-wavelength
ends of the Band into stripes and thereby ‘modulate’ the ci(J ) relation without
substantially altering the area of instability domain. If, however, on the velocity profile
there are continuous arcs composed of NCPs with cn >uN , then the corresponding
cuts merge together into continuous regions, thus substantially decreasing the part
of the Band which is occupied by the instability domain. The way in which this is
taking place will be shown in the next section by considering the flow (1.2).

† Note that this mode is merely a formal solution of (2.1). The question of the physical meaning
of the neutral solutions with D(k) < 0 and, in particular, as to how they match the solution of the
dissipative equations, demands special investigation and still remains open.
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5. Stability of a flow with a piecewise-linear velocity profile
In the flow (1.2) we have u′′ = −δ(y − 1) so that the velocity profile is made up

entirely of NCPs and a single point (y = 1) of infinite curvature. Equation (2.2)
becomes an equation d2g/dy2 − k2g = 0 plus matching conditions for y = 1:

g(1 − 0) = g(1 + 0), g′(1 + 0) − g′(1 − 0) +
g(1)

1 − c
= 0, (5.1)

The solution of the problem (2.2), (2.3) has the form

g = A sinh ky to the left of the matching points y = yN and y = 1,

g = B1 eky + B2 e−ky between matching points,

g = e−ky to the right of the matching points,


 (5.2)

where A, B1 and B2 are arbitrary (for the time being) coefficients.
There are two variants of relative position of the matching points. If the density

jump is above the layer of the velocity shear (yN � 1), then matching of the solutions
(5.2) leads to a dispersion equation[

1 − J (1 − E)

2k(1 − c)2

] [
1 − t

k(1 − c)

]
+

[
1 − J (1 + E)

2k(1 − c)2

]
t = 0, (5.3)

where t = tanh k, and E = exp[−2k(yN − 1)]. This cubic-in-c equation has only real
roots (see Appendix D), which suggests the presence of neutral oscillations only.

If, however, yN < 1, the matching procedure leads to the relations

B1 =
e−2k

2k(1 − c)
, B2 = 1 − 1

2k(1 − c)
(5.4)

and to the dispersion equation[
1 − 1 − E

2k(1 − c)

] [
1 − J t

k(uN − c)2

]
+

[
1 − 1 + E

2k(1 − c)

]
t = 0, (5.5)

where t = tanh (kyN ), and E = exp[−2k(1 − yN )]. It is a cubic (for c) equation that has
a pair of complex conjugate roots (one of them corresponding to the unstable mode),
if (see Appendix D)

max(J−, 0) < J < J+,

where

J±=
1+t

4kt

{
(d+E)2+

5Et

1+t
(d+E)− E2t2

2(1+t)2
±4

(
Et

1+t

)1/2[
d+E+

Et

4(1+t)

]3/2}
,

d = 2k(1 − uN ) − 1.


 (5.6)

With increasing k, the functions J±(k) increase monotonically; J+ � 0 and J− becomes
positive when k > k0, where k0 is the solution of the equation

e−2k0 = 1 − 2k0(1 − uN ). (5.7)

We now also give the asymptotic formulae for the case where 1 − uN = O(1). When
k � 1, for the unstable mode we have

c = uN +
J

2
+

i

2
[J (J+ − J )]1/2,

J+ ≈ 4(1 − uN )2k

[
1 − (1 − uN )

(
11

3
− 1

uN

)
k

]
.


 (5.8)
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Figure 8. Instability domain of the flow with the piecewise linear velocity profile (1.2). Thin
lines show contours of constant growth rate. The cross indicates the point of maximum growth
rate (γ = 0.1233 at k =1.87 and J = 0.448).

When k 
 1,

J± ≈ 2k

(
1 − uN − 1

2k

)2

± 4k1/2(1 − uN )3/2 e−k(1−uN ), (5.9)

i.e. the boundaries of the instability domain approach each other exponentially (and
the growth rate is, accordingly, exponentially small). The instability domain of the
flow (1.2) for uN = tanh (1/2) is shown in figure 8 (and is shaded in figure 1).

Equation (5.5) describes all flow oscillations, including neutral ones. On rewriting
it as

J t

k
= (c − uN )2

[
1 + t +

2Et

2k(c − 1) + 1 − E

]
= (c − uN )2

[
1 + t +

2Et

2k(c − uN ) − d − E

]
,

(5.10)

it is easy to verify that for each k there exists a continuous spectrum J = Jc(k) of the
neutral oscillations with c � 1 that occupies the upper part of the first quadrant of
the (k, J )-plane. Between the lower (c = 1) boundary of this spectrum (see figure 8),

J = J1(k) = (1 − uN )2k

(
1

t
+

1 + E

1 − E

)
=(1 − uN )2k[coth kyN + coth k(1 − yN )],

and the abscissa axis (J = 0) lies the Band that includes the instability domain.
Comparison with (5.6) and (5.9) shows that J1(k) is separated from the actual upper
boundary J = J+(k) of the instability domain for all k by a gap of width O(1) which,
in the light of the results from the preceding section, must be occupied by cuts that



Stability of stratified shear flows without inflection points 43

are left on the Band by long-wavelength branches of neutral curves corresponding
to neutral oscillations with uN < cn < 1. In a similar manner, the gap between the
abscissa axis and the actual lower boundary of the instability domain (J = J−(k)
when k > k0) must be occupied by cuts from short-wavelength branches of the same
neutral curves. Let us consider the neutral curves corresponding to these oscillations
in an attempt to demonstrate that this is indeed the case.

We start from the short-wavelength branches. In Appendix C it was established that
in a homogeneous (J = 0) flow, one neutral oscillation corresponds to each NCP. In
the flow (1.2), the velocity profile consists almost entirely of NCPs; therefore, here to
each value of cn from the interval 0 � cn < 1 a neutral oscillation with the wavenumber
kn(cn) corresponds, that is inferred from the equation (cf. (5.7))

e−2kn = 1 − 2kn(1 − cn)

and increases monotonically from zero (when cn = 0) to k0 (when cn = uN ), and further
to infinity (when cn → 1). In a stratified (J > 0) medium, each oscillation of this sort
gives rise to a short-wavelength branch of the neutral oscillations propagating with
the same velocity. To put it another way, a neutral curve issues from each point of
the positive abscissa semiaxis: when 0 < k < k0, neutral curves with cn <uN start (that
do not modify the stability domain), and when k > k0, neutral curves with cn >uN

start, which do provide the cuts at the right-hand end of the Band.
Unlike the short-wavelength branch, the long-wavelength branch does not exist

for any relation between cn and uN (see figure 3) but only when either cn >uN or
yN >yF0 = 1/cn > 1. The latter case is of no interest, as there is no instability at
such a position of the density jump. For the modes with uN < cn < 1, however, in
the limit k → 0 we obtain from (5.10) the spectrum J = cn(cn − uN )/uN which, of
course, coincides with (3.2). These are neutral oscillations, and since in the flow
(1.2) u′′ =0 almost everywhere, in some neighbourhood (in k) of the positive J -
semiaxis oscillations are also neutral. Indeed, from each point of this semiaxis in the
interval 0 < J < (1 − uN )/uN ≡ J1(0) a branch of neutral oscillations with the value of
cn corresponding to this J starts. These branches merge to constitute the region of
neutral oscillations adjacent to the J -axis.

With c = cn fixed in (5.10), it is possible to study how J (n)(k) increases along the
neutral curve, tending to infinity when k → kG, where kG is determined from the
equation

2kG(cn − 1) + 1 − E = 0, or e−2kG(1−yN ) = 1 − 2kG(1 − cn),

and, as is readily verified, can vary from zero (when cn → uN ) to infinity (when cn → 1)
remaining less than kn(cn) everywhere.

Thus the NCPs of the flow (1.2) generate two families of curves on the (k, J )-plane
which are made up of the long- and short-wavelength branches of the neutral curves,
respectively. Let us demonstrate that the envelopes of these families do represent
the boundaries J = J±(k) of the actual instability domain. Differentiating (5.10) with
respect to c we obtain

(c − uN )2 − (c − uN )

(
2d +

2 + t

1 + t
E

)
+ (d + E)

[
d + E − 2Et

1 + t

]
= 0

or

c = uN + d + E − Et

2(1 + t)
±

(
Et

1 + t

[
d + E − Et

4(1 + t)

])1/2

.




(5.11)
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On excluding c from (5.10) and (5.11), we find the equation for the envelopes which, as
can be verified, exactly coincide with (5.6). Simultaneously, we have obtained formula
(5.11), showing how the phase velocity varies along the boundaries of the instability
domain.

Finally, from (4.4) using (5.2) and (5.4) we find

D(k) = − g2(1)

(1 − c)2
+

2JgN
2

(c − uN )3

= − e−2k

(1 − c)2
+

2J

(c − uN )3

(
e−2k+kyN

2k(1 − c)
+

[
1 − 1

2k(1 − c)

]
e−kyN

)2

.

On setting D equal to zero and transforming the resulting equation using (5.10), we
arrive at (5.11). Consequently, the neutral curve arcs on which D > 0 (cuts) end just
on the boundaries (5.6) of the instability domain, so that the gaps between J1(k) and
J+(k) in the upper part of the Band, and between J−(k) and J = 0 in the lower part
are occupied just by NCP-related cuts.

6. Discussion
The main result of this study is that, with minimal assumptions about the velocity

profile (u′ > 0, u′′ � 0), it appears possible to obtain sufficiently detailed information
about flow stability. In flows of a general form (u′′ < 0 everywhere), the instability
domain on the (k, J )-plane occupies a band 0 < J < J1(k), having width of the order
of unity at the long-wavelength end and expanding infinitely when k → ∞ (figure 1).
The velocity cr of unstable modes varies from uN when J → 0 to 1 when J → J1(k).
The instability growth rate tends to zero at the edges of the Band and is positive
everywhere inside it.

The class of flows considered in this study is stable in a homogeneous medium,
so that instability is governed by stratification: weak stratification generates it, at
all scales simultaneously, from k = 0 to k = ∞, and strong stratification suppresses it
but only gradually, starting from long-wavelength perturbations. The fact that the
stable stratification can destabilize a flow that is stable in a homogeneous medium
was discovered by Thorpe (1969) and was discussed by a number of authors (see, for
example, Makov & Stepanyants 1984, 1985; Kozyrev & Stepanyants 1991; Caulfield
1994). Its physical interpretation is usually based on waves of negative energy (e.g.
Kozyrev & Stepanyants 1991; Caulfield 1994): such waves (which are associated
with velocity shear and are stable in themselves) do interact linearly with internal
waves (that are due to buoyancy and have positive energy), and this interaction yields
instability. Regarding stabilization, its mechanism is simple and clear. As is evident
from the dispersion equations (3.2) and (4.6) corresponding to the limiting cases of
long and short waves, with an enhancement of stratification, the velocity cr of the
perturbation (with a given k) increases. Its resonance level y = yc is thus expelled
increasingly closer to the flow periphery, and when stratification becomes so strong
that J � J1(k), the wave is no longer in resonance with the flow and turns into a
neutral oscillation of the medium.

This instability pattern can change in some details if on the flow velocity profile there
is a point (or points) of zero curvature y = yn, where u′′ = 0. We have shown that
to each NCP there corresponds a neutrally stable solution of the problem (2.1)
which describes the neutral oscillation mode, having a phase velocity cn = u(yn) and
represented on the (k, J )-plane by the neutral curve J = J (n)(k) (see figure 3). If the



Stability of stratified shear flows without inflection points 45

NCP lies below the density jump (cn <uN ), the neutral mode is isolated (i.e. there are
no other eigen-oscillations in its neighbourhood in the (k, J, c)-space) and does not
influence the configuration of the instability domain. If, however, cn >uN , the neutral
curve has two branches (figure 3a), the arcs of which when 0 � k < k∗ and k+ <k < ∞
(i.e. where D(k) > 0) belong to the Band in the sense that for each k from the intervals
indicated the neutral mode is an inner limiting point of a set of unstable modes.

As a result, each NCP lying above the density jump modifies the instability domain,
taking out of the Band one neutral ‘cut’ at the left (long-wavelength) and right (short-
wavelength) ends. If the number of such NCPs is finite, then the ends of the Band
are merely cut into a corresponding number of stripes (see figures 3(a) and 6), on
the boundaries between which the growth rate becomes zero. If, however, as in the
flow (1.2), whole segments of the velocity profile consist of NCPs, then the cuts
corresponding to these NCPs produce continuous regions inside the Band which
narrow greatly the instability domain (figure 8).

The NCP-related changes in the configuration of the instability domain have a
simple physical interpretation if it is taken into consideration that shear flow instability
is the result of a combined action of two mechanisms: the resonance and non-
resonance mechanisms (see, for example, Churilov & Shukhman 2001). First we
consider the resonance mechanism as the better studied one. It is based on the interac-
tion of the perturbation wave with a so-called critical layer, a narrow neighbourhood
of the resonance level y = yc, on which the flow velocity coincides with the wave
velocity, u(yc) = cr . The result of the resonance interaction (the absorption or
enhancement of the wave by the flow in the critical layer) depends on which number
of ‘fluid particles’ is larger: those which keep slightly ahead of the wave or those
which lag slightly behind. Therefore, it is highly sensitive to the structural details
of the flow. In terms of the plasma–hydrodynamic analogy (Andronov & Fabrikant
1979), the indicator is provided by the sign of the derivative of the ‘distribution
function’ f (u) = |u′|−1 of fluid particle velocities: when df/du ≡ −u′′/u′3 > 0 the wave
is enhanced by resonance, and when df/du < 0 it is absorbed by the flow.

In the class of flows considered above u′′ � 0; therefore, there is no resonance
absorption, and the ‘non-resonance’ instability domain is supplemented and expanded
by the region of resonance enhancement of the oscillations. In the vicinity of each
NCP the number of leading and lagging fluid particles is exactly equal (u′′ = 0);
therefore, the waves having a corresponding velocity, cr = cn, are not enhanced by
resonance and are unstable only in that range of k where instability is ensured by
the non-resonance mechanism. In the limiting case of the velocity profile (1.2) that is
composed of the NCPs, none of the waves is enhanced by resonance, so that figure 8
presents the ‘non-resonance’ instability domain (it is also shaded in figure 1), while
its complement to the Band is, in essence, the region of potential (but not realized in
the flow (1.2)) resonance enhancement.

It should be noted that of importance for the non-resonance mechanism is the
existence of a velocity shear, whereas it is almost insensitive to the structural details
of the flow. This is indicated by all of the cases where it is possible to separate the
resonance and non-resonance contributions to instability (see, for example, Churilov &
Shukhman 2001; Drazin & Howard 1962). One can also verify that this is the case
by comparing formulae (5.8) describing the instability of the flow (1.2) for k � 1, with
the non-resonance contribution (3.6) to the instability of an arbitrary flow – they
are in fact identical. This suggests that figure 8 also reflects (at least qualitatively)
the configuration of the non-resonance part of the instability domain of flows of a
general form without inflection points.
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In closing we make a brief remark regarding the density profile. The two-layer model
(1.1) should, obviously, be regarded as a limiting case where the ratio of the scale l

of density variation to the scale L of velocity variation tends to zero. The chief merit
of this model is that it makes it possible to separate in space two such exceptionally
important (for the perturbation dynamics) factors as the wave-flow resonance and
the stratification of the medium. One can expect that eigen-oscillations found above
will also remain (with some modifications) in a flow with a finite l � L. The most
modified of them will be those oscillations whose resonance level yc is embedded in
essentially inhomogeneous layers, |yc − yN | =O(l), as well as oscillations with kl > 1.
As the result, the lower boundary of the instability domain will rise from J = 0 to
J = O(kl), hence there would appear an instability threshold in J , and for each J the
spectrum of unstable perturbations would become bounded in k from above (and,
possibly, from below). It is highly plausible that new kinds of oscillations (unstable
ones among them) would appear which have no with counterpart in the two-
layer model. What oscillations would appear and what further changes would be
experienced by the instability domain for a finite (but small) l could be revealed only
by a special investigation.

I am indebted to a referee for helpful advices and criticism. Thanks are also due
to Mr V.G. Mikhalkovsky for his assistance in preparing the English version of the
manuscript.

Appendix A. Solving the problem (2.6) for k � 1

We seek the solution at the right (+) and left (−) of the point y = yN in the form
of an expansion in terms of k:

f± = f
(0)

± + kf
(1)

± + k2f
(2)

± + . . . ;

f
(0)
+ (∞) = 1, f

(i)
+ (∞) = 0, f (0)

− (0) = f (i)
− (0) = 0, i = 1, 2, . . .

At O(1)

d

dy

[
(u − c)2

df
(0)

±

dy

]
= 0;

f
(0)
+ (y) = 1, (u − c)2

df
(0)

−

dy
= B = const, f (0)

− = B

∫ y

0

dy1

(u1 − c)2
.

At O(k) at the right of yN we have

d

dy

[
(u − c)2

df
(1)
+

dy

]
=2(u − c)

d

dy

[
(u − c)f (0)

+

]
=

d

dy
[(u − c)2 − (1 − c)2],

(u − c)2
df

(1)
+

dy
= (u − c)2 − (1 − c)2, f

(1)
+ = −

∫ ∞

y

dy1

[
1 −

(
1 − c

u1 − c

)2 ]
,

and at the left

d

dy

[
(u − c)2

df
(1)

−

dy

]
= 2(u − c)

d

dy

[
(u − c)f (0)

−
]
=

d

dy

[
(u − c)2f (0)

−
]
+ (u − c)2

df
(0)

−

dy
,

(u − c)2
df

(1)
−

dy
= (u − c)2B

∫ y

0

dy1

(u1 − c)2
+ By, f (1)

− = By

∫ y

0

dy1

(u1 − c)2
.
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At O(k2) the solution at the right is

d

dy

[
(u − c)2

df
(2)
+

dy

]
=

d

dy

[
(u − c)2f (1)

+

]
+ (u − c)2

df
(1)
+

dy
,

(u − c)2
df

(2)
+

dy
= −(u − c)2

∫ ∞

y

dy1

[
1 −

(
1 − c

u1 − c

)2 ]
−

∫ ∞

y

dy1[(u1 − c)2 − (1 − c)2],

f
(2)
+ =

∫ ∞

y

dy1

∫ ∞

y1

dy2

[
1

(u1 − c)2
+

1

(u2 − c)2

]
[(u2 − c)2 − (1 − c)2],

and the solution at the left is

d

dy

[
(u − c)2

df
(2)

−

dy

]
=

d

dy

[
(u − c)2f (1)

−
]
+ (u − c)2

df
(1)

−

dy
,

(u − c)2
df

(2)
−

dy
= B

{
y(u − c)2

∫ y

0

dy1

(u1 − c)2
+

∫ y

0

dy1(u1 − c)2
∫ y1

0

dy2

(u2 − c)2
+

1

2
y2

}
,

f (2)
− = B

{
1

2
y2

∫ y

0

dy1

(u1 − c)2
+

∫ y

0

dy1

(u1 − c)2

∫ y1

0

dy2(u2 − c)2
∫ y2

0

dy3

(u3 − c)2

}
.

Thus, accurate to O(k3) we have the solution at the right of yN :

(u − c)2
df+

dy
= k[(u − c)2 − (1 − c)2] − k2

∫ ∞

y

dy1[(u − c)2 + (u1 − c)2]

[
1 −

(
1 − c

u1 − c

)2 ]
,

f+ = 1 − k

∫ ∞

y

dy1

[
1 −

(
1 − c

u1 − c

)2 ]

+ k2

∫ ∞

y

dy1

∫ ∞

y1

dy2

[
1

(u1 − c)2
+

1

(u2 − c)2

]
[(u2 − c)2 − (1 − c)2],

and the solution at the left: f− = BF−,

(u − c)2
dF−

dy
= 1 + ky +

1

2
k2y2 + k(1 + ky)(u − c)2

∫ y

0

dy1

(u1 − c)2

+ k2

∫ y

0

dy1(u1 − c)2
∫ y1

0

dy2

(u2 − c)2
,

F− = (1 + ky +
1

2
k2y2)

∫ y

0

dy1

(u1 − c)2
+ k2

∫ y

0

dy1

(u1 − c)2

∫ y1

0

dy2(u2 − c)2
∫ y2

0

dy3

(u3 − c)2
.

The pole u(y) = c in the integrals is indented from below.
It is easy to see that a constant B is determined from the first matching condition

in (2.5) and is not involved in the second matching condition. Using the identity∫ yN

0

dy

(u − c)2

∫ y

0

dy1(u1 − c)2
∫ y1

0

dy2

(u2 − c)2

=

∫ yN

0

dy

(u − c)2

∫ yN

0

dy1(u1 − c)2
∫ y1

0

dy2

(u2 − c)2
−

∫ yN

0

dy(u − c)2
[ ∫ y

0

dy1

(u1 − c)2

]2

,
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we find

0 = Jf+(yN )F−(yN ) +

[
(u − c)2

df+

dy
F− − (u − c)2

dF−

dy
f+

]
y=yN

=

[
J

∫ yN

0

dy

(u−c)2
−1

][
1+kyN +

1

2
k2yN

2 +k2

∫ yN

0

dy1(u1 −c)2
∫ y1

0

dy2

(u2 − c)2

]
f+(yN )

− k(1 + kyN )

{
(1 − c)2 + k

∫ ∞

yN

dy1[(u1 − c)2 − (1 − c)2]

} ∫ yN

0

dy1

(u1 − c)2

− Jk2

∫ yN

0

dy(u − c)2
[∫ y

0

dy1

(u1 − c)2

]2

+ O(k3). (A 1)

With the same accuracy, this equation can be cancelled by (1+ kyN + 1
2
k2yN

2); after

that, on excluding the terms of O(k3) when |uN − c| 
 k, and O(k2) when |uN − c| =
O(k), we obtain the dispersion equation (3.1).

For a weak stratification, J = O(k), the difference |uN − c| = O(k), and integrals in
(A1), having a resonance denominator, become of O(k−1) (with the exception of the
last one). We put∫ yN

0

dy

(u − c)2
=

1

u′
N (c − uN )

− u′′
N

u′3
N

ln
(c − uN )u′

N

k
+ i1,

∫ ∞

yN

dy1

[
1 −

(
1 − c

u1 − c

)2 ]
= (1 − c)2

[
1

u′
N (c − uN )

− u′′
N

u′3
N

ln
(c − uN )u′

N

k
+

iπu′′
N

u′3
N

]
+ i2,

∫ ∞

yN

dy1

(u1 − c)2

∫ ∞

y1

dy2[(u2 − c)2 − (1 − c)2] =
iN

u′
N (c − uN )

+ O

(
ln

c − uN

k

)
,

where

iN =

∫ ∞

yN

dy[(1 − c)2 − (u − c)2],

and i1 and i2 are O(1). With the notation z = u′
N (c − uN )/k, and J = kJ̃ , from (A1)

we obtain the dispersion equation

z2 − J̃ z + J̃ (1 − uN )2 = J̃ k

{
−iπ

u′′
N

u′3
N

(1 − uN )4 +
u′′

N

u′3
N

[2(1 − uN )2 − z]z ln z

+2
1 − uN

u′
N

z + z(1 − uN − z)2i1 − (1 − uN )2i2 + iN

}
+ O(k2 ln k). (A 2)

Appendix B. Oscillations in the neighbourhood of neutral modes
B.1. Oscillations in the vicinity of the neutral mode with c = 1

When c → 1 − 0, the resonance point yc → +∞ and for this reason the details of
calculations depend on the asymptotic behaviour of u(y). For definiteness, we assume
that

u(y) ≈ 1 − ve−αy; v > 0, α > 0 (B 1)

when y → ∞. We put c = 1 − vs and |s| � 1, and use in (2.2) the variable z = e−αy:

z
d

dz

(
z
dg

dz

)
+

(
u′′

1 − u − vs
− k2

)
g

α2
= 0; |g(0)| < ∞, g(1) = 0;

g+(zN ) = g−(zN ), zN

(
dg+

dz
− dg−

dz

)
z=zN

+
J g(zN )

α(1 − uN − vs)2
= 0,




(B 2)
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where u′′ = d2u/dy2 is regarded as the function of z, and g+ and g− are the solutions
for z > zN and z < zN , respectively.

For c =1 (s = 0) the general solution of equation (B 2) in the limit z → 0 has an
asymptotic representation (if 2q is not equal to an integer):

g = A1z
q[1 + O(z)] + A2z

−q[1 + O(z)]; q = (1 + k2/α2)1/2.

Let us denote the bounded solution (A1 = 1, A2 = 0) by G(z) and express the solution
of the problem (B 2) in terms of it. Up to an arbitrary common factor,

g ≡ g0(z) =

{
g−(z) = G(z), z < zN,

g+(z) = BF (z), z > zN,
(B 3)

where

F (z) = G(z)

∫ 1

z

dz1

z1G2(z1)
, B =

1

αI0

=

[∫ 1

zN

dz

zG2(z)

]−1

;

J = J1(k) = α(1 − uN )2
[
G2(zN )

∫ 1

zN

dz

zG2(z)

]−1

.

When s �= 0, equation (B 2) has, along with z =0, a singular point 1 − u − vs = 0, or
z ≈ s. We construct the solution using the method of matched asymptotic expansions.

In the ‘outer’ region (z 
 |s|) we seek the solution in the form of an expansion
(formally, in the parameter s):

g± = g±
(0) + g±

(1) + . . . , J = J1(k) + J (1)(k) + . . . ,

where g
(0)
± are determined by formulae (B 3),

g
(1)
+ =

Bvs

α2

∫ 1

z

dz1u
′′(z1)

z1[1 − u(z1)]2
F (z1)[F (z1)G(z) − F (z)G(z1)],

g(1)
− =

vs

α2

∫ zN

z

dz1u
′′(z1)

z1[1 − u(z1)]2
G(z1)[F (z1)G(z) − F (z)G(z1)] + B1BF (z) + B2G(z).

Matching g
(1)
+ and g

(1)
− at z = zN gives

B1 = −J (1)

J1

− 2vs

1 − uN

− Bvs

α2

∫ 1

zN

dz u′′

z(1 − u)2
F 2,

B2 =
J (1)

J1

+
2vs

1 − uN

+
vs

α2

∫ 1

zN

dz u′′

z(1 − u)2
F (2BF − G).

An asymptotic representation of the solution for z → 0 has the form (only the main
terms are written out):

g(z) = zq − z−q

2q

[
BJ (1)

J1

+
2Bvs

1 − uN

+
vs

α2

∫ 1

0

dzu′′

z(1 − u)2
g2

0(z)

]
+ . . . . (B 4)

In the ‘inner’ region (z =O(|s|)) we introduce the variable x = z/s and, in view of
(B 1), from (B 2) we obtain

x
d

dx

(
x

dg

dx

)
+

(
x

1 − x
− k2

α2

)
g = 0, |g(0)| < ∞.

Substitution of g = xβh(x) with β = k/α leads to a hypergeometric equation

x(1 − x)
d2h

dx2
+ (2β + 1)(1 − x)

dh

dx
+ h = 0,
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the bounded (when x → 0) solution of which has the form

h = AF (β + q, β − q; 2β + 1; x), A = const,

where F (a, b; c; z) is a hypergeometric function (Erdelyi 1953). Using the formulae
for analytic continuation of F (a, b; c; z) (Erdelyi 1953) we find the asymptotic
representation of g(z) when z 
 |s| (i.e. x 
 1), provided that |arg(−s)| < π:

g(z) = A
�(2β + 1)�(2q)

(β + q)[�(β + q)]2
(−s)β−q

sβ

{
zq − �(−2q)

�(2q)

[
�(β + q)

�(β − q + 1)

]2
(−s)2q

zq
+ . . .

}
.

Here �(x) is the Euler gamma function (Erdelyi 1953).
Matching with (B 4) yields the dispersion equation

J (1)

J1

+ vsB0 +
παI0(−s)2q

sin 2πq

[
�(β + q)

�(2q)�(β − q + 1)

]2

= 0, (B 5)

where

B0 =
2

1 − uN

+
I0

α

∫ 1

0

dzu′′

z(1 − u)2
g2

0(z) ≡ 2

1 − uN

+ I0

∫ ∞

0

dyu′′

(1 − u)2
g2

0(y) > 0.

Since q > 1, the last term in this equation is small compared to the second term, but
it can carry information about the imaginary part of c. We solve (B 5) by the method
of successive approximations. At the main order

J (1) = −vsB0J1. (B 6)

Multiplying equation (B 2) with s = 0 by 2g0/[z(1 − u)] and integrating over z from 0
to 1, in view of the boundary conditions and matching conditions, it is easy to show
that B0 > 0, so that J (1) and s have opposite signs.

If J (1) > 0 (i.e. J >J1(k)), then (−s) > 0, and the last term in (B 5) gives only a small
real correction to (B 6) – the flow is stable, as would be expected. If, however, J (1) < 0,
then to a first approximation (see (B 6)) s > 0, and (−s)2q is a complex number.
In view of the limitation |arg(−s)| < π, the equality (−s) = seiπ corresponds to the
unstable mode (Im c > 0). Upon substituting into (B 5), we find that when J < J1(k)

c = 1 − vs ≈ 1 − J1 − J

B0J1

+
iπαI0

B0

[
�(q + k/α)

�(2q)�(1 + k/α − q)

]2 (
J1 − J

vB0J1

)2q

.

B.2. Oscillations in the vicinity of the neutral mode with c = cn

Let g(y) be an eigenfunction of the neutral mode with c = cn. Using the designations

L̂ =
d2

dy2
+

N 2(y)

(u − cn)2
− u′′

u − cn

− k2; h0 =
∂g

∂k2
, h1 =

∂g

∂J
, h2 =

∂2g

∂J 2
,
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from (2.1), in view of (1.1), we obtain

L̂h0 = g +

[
u′′

(u − cn)2
− 2N 2

(u − cn)3

]
∂c

∂k2
g,

L̂h1 = −δ(y − yN )

(u − cn)2
g +

[
u′′

(u − cn)2
− 2N 2

(u − cn)3

]
∂c

∂J
g,

L̂h2 = − 2δ(y − yN )

(u − cn)2

(
h1 +

2g

u − cn

∂c

∂J

)
+

[
u′′

(u − cn)2
− 2N2

(u − cn)3

]

×
(

2
∂c

∂J
h1 +

∂2c

∂J 2
g

)
+ 2

[
u′′

(u − cn)3
− 3N 2

(u − cn)4

](
∂c

∂J

)2

g.




(B 7)

Multiplying equations (B 7) by g and integrating over y, we find

D(k)
∂c

∂k2
= −

∫ ∞

0

dy g2(y),

D(k)
∂c

∂J
=

gN
2

(uN − cn)2
,

D(k)
∂2c

∂J 2
=

2gNh1N

(uN − cn)2
− 2

∂c

∂J

[∫ ∞

0

dy u′′g h1

(u − cn)2
− 2gN (gN + J h1N )

(uN − cn)3

]

− 2

(
∂c

∂J

)2 [∫ ∞

0

dy u′′g2

(u − cn)3
− 3JgN

2

(uN − cn)4

]
,




(B 8)

where gN = g(yN ), h1N = h1(yN ),

D(k) =

∫ ∞

0

dy u′′g2

(u − cn)2
+

2JgN
2

(cn − uN )3
. (B 9)

From the first two equations in (B 8) it is easy to see that the first derivatives of c

with respect to k2 and J are real and (dJ/dk2)c=cn
> 0, so that J (n)(k) is a monoto-

nically increasing function on each branch of the neutral curve.
Further, it is obvious that h1(y) is a real function, so that an imaginary contribution

to the second derivative of c with respect to J is made only by the last integral in
(B 8):

D(k) Im
∂2c

∂J 2
= −πuiv

c

uc
′3 gc

2

(
∂c

∂J

)2

. (B 10)

Upon substituting into the Taylor expansion for c, we obtain (4.3).
To describe the transition over the neutral curve at the critical points k∗ and k+,

we put J = J (c) and, as earlier, we obtain (cf. (B 8)):

gN
2

(uN − cn)2
∂J

∂c
= D(k) = 0,

gN
2

(uN − cn)2
∂2J

∂c2
= 2

∫ ∞

0

dy u′′g

(u − cn)2

(
h1 +

g

u − cn

)
+

2J gN

(cn − uN )3

(
2h1N − 3gN

cn − uN

)
.

From this, by analogy with (B 10), we find

Im
∂2J

∂c2
=

πuc
iv

uc
′3 (uN − cn)

2

(
gc

gN

)2

< 0.
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Thus near the neutral curve in this case

J − J (n) ≈ 1

2

∂2J

∂c2
(c − cn)

2, c − cn ∼
(
J − J (n)

)1/2
. (B 11)

Now we investigate the sign of D(k) on the neutral curve J = J (n)(k). The first term
in (B 9) is always negative and the second term is positive only when uN < cn. In
this case the neutral curve has two branches. At the left end of the long-wavelength
branch, when k = 0, we have (see (3.2) and Appendix A):

g+(y) = u−cn, g−(y) = J (u−cn)

∫ y

0

dy1

(u1 − cn)2
, J = J (n)(0) =

[∫ yN

0

dy

(u − cn)2

]−1

.

In (B 9) we represent
∫ ∞

0
dy . . . =

∫ yN

0
dy . . . +

∫ ∞
yN

dy . . . , and after integrating twice

by parts we find

D(0) = J 2

∫ yN

0

dy u′′
[∫ y

0

dy1

(u1 − cn)2

]2

− uN
′ +

2J

cn − uN

= 2J 2

∫ yN

0

dy

(cn − u)3
> 0.

Let us now consider the right end of this same branch, k → kG −0, which is determined
by the fact that yG → yN +0. Since G(yG) = 0, for |y −yG| � 1 we put G(y) ≈ α(y −yG)
and, using (2.4) and (4.1), obtain

gN = GN ≈ −α(yG − yN ), FN ≈ −α−1, J (n)(k) ≈ (uN − cn)
2

yG − yN

,

so that the second term in (B 9) tends to zero as (yG − yN ). Consequently, at this
end D(k) < 0. Turning next to the short-wavelength branch, at its left end when
k → kn + 0, we see that J → 0 and D(k) < 0. At the right end, however, when k 
 1,
g± ≈ gN exp(−k|y − yN |), J (n)(k) ≈ 2 (cn − uN )2k + J∗

(n), and

D(k) ≈ gN
2

[
uN

′′

k(uN − cn)2
+

4(cn − uN )2k + 2J∗
(n)

(cn − uN )3

]
=

4 k gN
2

cn − uN

+ O(1) > 0.

Thus, if cn > uN , at each of the neutral curve branches, D(k) changes its sign on
going from its left to right end: on the long-wavelength branch from plus to minus
when k = k∗, and on the short-wavelength branch from minus to plus when k = k+

(see figure 3a). If, however, cn <uN , then D(k) < 0 throughout the neutral curve
(figure 3b, c).

Appendix C. Properties of F (y) and G(y) in flows with an NCP
In a homogeneous flow with u′′(y) of fixed sign (strictly negative, in particular) there

are no eigen-oscillations. Mathematically, this implies that when k > 0 the functions
F (y) and G(y) introduced in (2.4) have no real zeros (except for F (0) = 0) for any
complex c. In flows with an NCP, eigen-oscillations do appear: to each NCP y = yn

there corresponds a neutral oscillation with the phase velocity c = cn = u(yn).
Indeed, when c = cn, the Rayleigh equation has no singularity at the point of phase

resonance u(y) = c, and the problem of eigen-oscillations is equivalent to the problem
of energy levels E = −k2 of a quantum particle in the potential well of finite depth
U (y) = u′′/(u − cn) (see figure 9) with the infinitely high wall at y = 0. The number
of levels in the well is equal to the number of zeros of the bounded (when y → ∞)
solution of the Schrödinger equation with E = 0 (Calogero & Degasperis 1982). For
the Rayleigh equation such a solution is represented by the function G(y) which when
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1 2 3
y

0

4

8

12

16

U

yn

Figure 9. Potential U (y) for the eigenvalue problem in the homogeneous flow (4.8).

k = 0 is equal to (u − cn), and, because of the monotonic character of u(y), it has
exactly one zero, y = yn. When k > 0, G(y) remains real along the axis y, and its zero,
y = yG, with increasing k, shifts to the left to reach y = 0 at a certain k = kn > 0: kn

and the corresponding G(y) are just the wavenumber and the eigenfunction of the
eigen-oscillation, related to the NCP y = yn. Note that when k = kn, not only g+ = G

but also g− = G, each one in its domain of definition.
The function F (y), when c = cn, is also real along the axis y. When k = 0 it is

negative (together with G(y)) in the region 0 < y < yn, and positive when y → ∞.
Consequently, it has zero at y = yF0 >yn that is determined by the equation†∫ yF0

0

dy

(u − cn)2
= 0.

With an increase of k, the zero of F (y), y = yF , shifts along the axis y to the right, and
when k → kn it goes to infinity. Thus if k < kn, F (y) is negative when 0 <y <yF and
positive when y >yF , and G(y) is negative when y <yG � yn < yF and positive when
y >yG. If, however, k > kn, the two functions are positive everywhere on 0 <y < ∞.

Appendix D. Analysing the roots of equations (5.3) and (5.5)
The cubic (for c) equations (5.3) and (5.5) should be written first in a reduced form

s3 + ps + q = 0, (D 1)

and then the solutions of (D 1) may be written using the Cardano formulae (see, for
example, Korn & Korn 1968):

s1 = w+ + w−, s2,3 = −w+ + w−

2
±

√
3

2
i (w+ − w−);

w± =
(

−q

2
± D1/2

)1/3

, D =
(p

3

)3

+
(q

2

)2

.


 (D 2)

† The pole y = yn should be indented in a complex plane.
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In the case of real p and q , equation (D1) has a pair of complex conjugate roots if
D > 0, whereas all roots are real when D � 0.

1. yN � 1. In equation (5.3) we assume s = c − 1 + t/[3k(1 + t)]; then

p = −
[

t2

3k2(1 + t)2
+

J

2k

(
1 − 1 − t

1 + t
E

)]
,

q =
2t3

27k3(1 + t)3
− J t

3k2(1 + t)

(
1 − 1 + 2t

1 + t
E

)
,

D = − J t4

54k5(1 + t)4

{
1

4

(
1 − 1 − t

1 + t
E

)3[
Jk(1 + t)2

t2

]2

− S
Jk(1 + t)2

t2
+ 1 − E

}
,

S = 1 − 2 + 7t

1 + t
E +

1 + 7t + 11
2
t2

(1 + t)2
E2.

Instability is possible in the case where the quadratic trinomial (relative to
Jk(1 + t)2/t2) involved in D in curly brackets is negative. Its roots[

Jk(1 + t)2

t2

]
±

= 2

(
1 − 1 − t

1 + t
E

)−3(
S ± ∆1/2

)
,

∆ = S2 − (1 − E)

(
1 − 1 − t

1 + t
E

)3

=
16Et

1 + t

[
5t + 4

4(1 + t)
E − 1

]3

,




(D 3)

are real and different if E > 4(1 + t)/(4 + 5t). We fix k (and t = tanh k) and seek the
region of parameters in which inequality holds. Since E = e−2k(yN −1) � 1, both roots
(D 3) have the same sign, coinciding with the sign of S. A minimum S (in E) is
reached when

E =
(1 + t)(2 + 7t)

2 + 14t + 11t2
<

4 + 4t

4 + 5t
,

i.e. the desired region lies on the increasing branch of the parabola S(E). Therefore
in this region

S(E) � S(1) = 1 − 2 + 7t

1 + t
+

1 + 7t + 11
2
t2

(1 + t)2
= − t2

2(1 + t)2
< 0,

so that both roots (D 3) can only be negative, and this is possible only for unstable
stratification (J < 0). Thus, for stable stratification, all roots of (5.3) are real, i.e. the
flow (1.2) with yN � 1 is stable.

2. yN < 1. In equation (5.5) it is assumed (for designations, see the main text) that
s = c − uN − d1/(6k) where d1 = d + (1 − t)E/(1 + t), then

p = −
[
J̃ +

d1
2

12k2

]
, q =

J̃

3k

(
d +

1 + 2t

1 + t
E

)
− d1

3

108k3
,

D = − J̃

27

[
J̃ 2 − 2SJ̃ +

d1
3

(2k)4
(d + E)

]
, J̃ =

J t

k(1 + t)
;

S =
1

4k2

[
d2 +

2 + 7t

1 + t
Ed +

1 + 7t + 11
2
t2

(1 + t)2
E2

]
=

d1

4k2

(
d +

1 + 8t

1 + t
E

)
+

27t2E2

8k2(1 + t)2
.

It is easy to see that when k > 0

d + E = −[1 − 2k(1 − uN )] + exp[−2k(1 − uN )] > 0,
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so that the discriminant of the quadratic trinomial involved in the expression for D

∆ = S2 − d1
3

(2k)4
(d + E) =

Et

(1 + t)k4

[
d +

4 + 5t

4(1 + t)
E

]3

> 0,

and D becomes zero when J̃ = 0 or J̃ = J̃ ± = S ± ∆1/2. If d1 > 0, then J̃ ± > 0 (since
S > 0), otherwise J̃ + > 0 and J̃ − < 0. J̃ − becomes zero if d1 = 0, from which follows
(5.7).
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